• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding
 
  • Details
  • Full
Options
2018
Journal Article
Title

Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding

Abstract
Modern advanced high-strength steel sheets for automotive applications are mostly zinc coated for corrosion resistance. However, the presence of zinc can-besides its positive effects-increase the material's susceptibility to liquid metal embrittlement (LME) during resistance spot welding (RSW). Zinc and its eutectics are, due to their low melting point, present in liquid state during the welding process. This fact can, in combination with other factors like tensile strains or stresses, lead to the formation of brittle, intergranular cracks in the weld, and heat-affected zone. This phenomenon is commonly called liquid metal embrittlement. In order to understand the process from a practical perspective, one must learn what factors facilitate it. In this study, industry-relevant parameters are investigated regarding their influence on the occurrence of LME, embodied by the formation of surface cracks. It was found that electrode wear has less of an influence on the cracking susceptibility than welding current or tensile stresses. Finite element analysis is believed to provide a powerful tool in order to gain insights on the formation process. Modeling of the process shows promising initial results, revealing the underlying local stress and strain fields, unmeasurable with common techniques.
Author(s)
Frei, Julian
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Rethmeier, Michael  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Journal
Welding in the world  
DOI
10.1007/s40194-018-0619-1
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024