• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Integrating Energy Flexibility in Production Planning and Control - An Energy Flexibility Data Model-Based Approach
 
  • Details
  • Full
Options
2021
Conference Paper
Titel

Integrating Energy Flexibility in Production Planning and Control - An Energy Flexibility Data Model-Based Approach

Abstract
Production companies face the challenge of reducing energy costs and carbon emissions while achieving the logistical objectives at the same time. Active management of electricity demand, also known as Demand Side Management (DSM) or Energy Flexibility (EF), has been recognized as an effective approach to minimize energy procurement costs for example by reducing peak loads. Additionally, it helps to integrate (self-generated, volatile) renewable energies to reduce carbon emissions and has the ability to stabilize the power grid, if the incentives are set appropriately. Although production companies possess great potential for EF, implementation is not yet common. Approaches to practical implementation for integrating energy flexibility into production planning and control (PPC) to dynamically adapt the consumption to the electricity supply are scarce to non-existent due to the high complexity of such approaches. Therefore, this paper presents an approach to integrate EF into PPC. Based on the energy-oriented PPC, the approach identifies and models EF of processes in a generic energy flexibility data model (EFDM) which is subsequently integrated in the energy-oriented production plan and further optimised on the market side. An application-oriented use case in the chemical industry is presented to evaluate the approach. The implementation of the approach shows that EF can have a variety of characteristics in production systems and a clear, structured, and applicable method can help companies to an automated EF. Finally, based on the results of the use case, it is recommended to introduce EF in production companies stepwise by extending existing planning and scheduling systems with the presented approach to achieve a realization of flexibility measures and a reduction of energy costs.
Author(s)
Bank, Lukas
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV
Wenninger, Simon
Fraunhofer-Institut für Angewandte Informationstechnik FIT
Köberlein, Jana
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV
Lindner, Martin
TU Darmstadt
Kaymakci, Can
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Weigold, Matthias
TU Darmstadt
Sauer, Alexander
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Schilp, Johannes
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV
Hauptwerk
CPSL 2021, 2nd Conference on Production Systems and Logistics. Proceedings. Online resource
Konferenz
Conference on Production Systems and Logistics (CPSL) 2021
Thumbnail Image
DOI
10.15488/11249
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Angewandte Informationstechnik FIT
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Tags
  • Demand-Side-Managemen...

  • Energieflexibilität

  • Produktionsplanung un...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022