• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Investigations of the deuterium permeability of as-deposited and oxidized Ti2AlN coatings
 
  • Details
  • Full
Options
2020
Journal Article
Title

Investigations of the deuterium permeability of as-deposited and oxidized Ti2AlN coatings

Abstract
Aluminum containing Mn+1AXn (MAX) phase materials have attracted increasing attention due to their corrosion resistance, a pronounced self-healing effect and promising diffusion barrier properties for hydrogen. We synthesized Ti2AlN coatings on ferritic steel substrates by physical vapor deposition of alternating Ti- and AlN-layers followed by thermal annealing. The microstructure developed a {0001}-texture with platelet-like shaped grains. To investigate the oxidation behavior, the samples were exposed to a temperature of 700 °C in a muffle furnace. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) depth profiles revealed the formation of oxide scales, which consisted mainly of dense and stable a-Al2O3. The oxide layer thickness increased with a time dependency of ~t1/4. Electron probe micro analysis (EPMA) scans revealed a diffusion of Al from the coating into the substrate. Steel membranes with as-deposited Ti2AlN and partially oxidized Ti2AlN coatings were used for permeation tests. The permeation of deuterium from the gas phase was measured in an ultra-high vacuum (UHV) permeation cell by mass spectrometry at temperatures of 30-400 °C. We obtained a permeation reduction factor (PRF) of 45 for a pure Ti2AlN coating and a PRF of ~3700 for the oxidized sample. Thus, protective coatings, which prevent hydrogen-induced corrosion, can be achieved by the proper design of Ti2AlN coatings with suitable oxide scale thicknesses.
Author(s)
Gröner, L.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Mengis, L.
Department of High Temperature Materials, DECHEMA-Forschungsinstitut, Frankfurt
Galetz, M.
Department of High Temperature Materials, DECHEMA-Forschungsinstitut, Frankfurt
Kirste, Lutz  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Daum, P.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Wirth, M.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Meyer, F.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Fromm, A.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Blug, B.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Burmeister, F.
Fraunhofer-Institut für Werkstoffmechanik IWM  
Journal
Materials  
Open Access
DOI
10.3390/ma13092085
File(s)
N-590312.pdf (3.18 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • MAX phase

  • Ti2AlN

  • PVD coating

  • oxidation

  • hydrogen permeation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024