• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Computing Best Ontology Excerpts via Weighted Partial Max-SAT Solving
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Computing Best Ontology Excerpts via Weighted Partial Max-SAT Solving

Abstract
We consider the problem of computing best excerpts of ontologies, which are selections of a certain, small number k of axioms that best capture the knowledge regarding a given set of weighted terms. Such excerpts can be useful for ontology selection, for instance. The weights of terms are to reflect different importances of considered terms, for which we propose an incompleteness measure of excerpts based on the term weights and the notion of logical difference. We present a method to compute best k-excerpts by finding all subsumption justifications and solving a weighted partial Max-SAT problem. We demonstrate the viability of our approach with an evaluation on biomedical ontologies.
Author(s)
Chen, Jieying
Laboratoire de Recherche en Informatique, Université de Paris-Sud
Ma, Yue
Laboratoire de Recherche en Informatique, Université de Paris-Sud
Walther, Dirk
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Mainwork
31st International Workshop on Description Logics, DL 2018. Proceedings. Online resource  
Conference
International Workshop on Description Logics (DL) 2018  
International Conference on Principles of Knowledge Representation and Reasoning (KR) 2018  
Link
Link
Language
English
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Keyword(s)
  • ontologies

  • ontology excerpt

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024