• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Ferroelectric [HfO2/ZrO2] Superlattices with Enhanced Polarization, Tailored Coercive Field, and Improved High Temperature Reliability
 
  • Details
  • Full
Options
2023
Journal Article
Title

Ferroelectric [HfO2/ZrO2] Superlattices with Enhanced Polarization, Tailored Coercive Field, and Improved High Temperature Reliability

Abstract
Modern microelectronic systems and applications demand an every increasing amount of non-volatile memories that are fast, reliable, and consume little power. Memory concepts based on ferroelectric HfO2 like the ferroelectric field effect transistor (FeFET) and the ferroelectric random access memory (FeRAM) are promising to satisfy these requirements. As a consequence, continuing high attention is given to improve the ferroelectric properties and the reliability characteristics of the ferroelectric HfO2 films - for instance by using different dopant elements, dopant concentrations, and film thicknesses. Superlattices (i.e., a periodic structure of two materials stacked upon each other) are a promising alternative approach. Herein, [HfO2/ZrO2] superlattices of various sublayer thicknesses and a constant total thickness of 10 nm are embedded into metal-ferroelectric-metal (MFM) capacitors and then electrically as well as structurally characterized with special focus on remanent polarization, coercive field, endurance, and high temperature reliability. Compared to a 10 nm (Hf,Zr)O2 solid solution reference film, the use of superlattice stacks significantly improves the above mentioned parameters. In addition, most of these parameters depend on the sublayer thickness, which allows, for instance, tailoring the coercive field of the whole device.
Author(s)
Lehninger, David
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Prabhu, Aditya
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Sünbül, Ayse
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Ali, Tarek Nadi Ismail  
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Schöne, Fred
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Kämpfe, Thomas  orcid-logo
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Biedermann, Kati  
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Roy, Lisa
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Seidel, Konrad  
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Lederer, Maximilian
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
Eng, Lukas M.
Journal
Advanced physics research  
Open Access
DOI
10.1002/apxr.202200108
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Photonische Mikrosysteme IPMS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024