• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Deep learning for part identification based on inherent features
 
  • Details
  • Full
Options
2019
Journal Article
Titel

Deep learning for part identification based on inherent features

Abstract
The identification of parts is essential for the efficient automation of logistic processes such as part supply in assembly and disassembly. This paper describes a new method for the optical identification of parts without explicit codes but based on inherent geometrical features with Deep Learning. The paper focusses on the improvement of training of Deep Learning systems taking into account conflicting factors such as limited training data and high variety of parts. Based on a case study in turbine industry the effects of steadily growing training data on the robustness of part classification are evaluated.
Author(s)
Krüger, Jörg
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
Lehr, Jan
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
Schlüter, Marian
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
Bischoff, Nils
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
Zeitschrift
CIRP Annals. Manufacturing Technology
Thumbnail Image
DOI
10.1016/j.cirp.2019.04.095
Language
English
google-scholar
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
Tags
  • object recognition

  • identification

  • neural network

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022