• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Projection Domain Metal Artifact Reduction in Computed Tomography using Conditional Generative Adversarial Networks
 
  • Details
  • Full
Options
2021
Presentation
Title

Projection Domain Metal Artifact Reduction in Computed Tomography using Conditional Generative Adversarial Networks

Title Supplement
A contribution for MIDL 2021, Conference Medical Imaging with Deep Learning, Lübeck, Germany, July 07, 2021
Abstract
High-density objects in the field of view, still remain one of the major challenges in CT image reconstruction. They cause artifacts in the image, which degrade the quality and the diagnostic value of the image. Standard approaches for metal artifact reduction are often unable to correct these artifacts sufficiently or introduce new artifacts. In this work, a new deep learning approach for the reduction of metal artifacts in CT images is proposed using a Generative Adversarial Network. A generator network is applied directly to the projection data corrupted by the metal objects to learn the corrected data. In addition, a second network, the discriminator, is used to evaluate the quality of the learned data. The results of the trained generator network show that most of the data could be reasonably replaced by the network, reducing the artifacts in the reconstructed image.
Author(s)
Blum, Nele
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Buzug, Thorsten
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Stille, Maik  orcid-logo
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Conference
Conference "Medical Imaging with Deep Learning" 2021  
Link
Link
Language
English
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024