• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Modelling carrier recombination in highly phosphorus-doped industrial emitters
 
  • Details
  • Full
Options
2011
Conference Paper
Title

Modelling carrier recombination in highly phosphorus-doped industrial emitters

Abstract
One important parameter for modelling emitter recombination is the surface recombination velocity (SRV), which strongly depends on the surface doping concentration and the applied surface passivation. However, for highly phosphorus-doped surfaces with concentrations in excess of 21020 cm-3, where not all of the dopant is electrically activated, data is hardly available in the literature. Moreover, the bulk carrier lifetime in such supersaturated near surface regions is unknown. We use an analytical model to describe silicon-nitride-passivated phosphorus-diffused emitters. The model shows excellent agreement with a recently presented numerical solver, deviating less than 1 %. In both cases we apply a Fermi-Dirac statistics correction and account for band gap narrowing to calculate the intrinsic carrier density. Our results from measurements of the emitter dark saturation current density indicate that either the SRV or the local carrier lifetime in the supersaturated regi on are strongly affected by the doping concentration, even if it exceeds the dopant activation limit by far. Assuming only Auger recombination in the supersaturated region, we derive an upper limit for the SRV that depends on the chemical phosphorus surface concentration.
Author(s)
Kimmerle, Achim
Wolf, Andreas  
Belledin, Udo  
Biro, Daniel  
Mainwork
SiliconPV 2011 Conference, 1st International Conference on Crystalline Silicon Photovoltaics. Proceedings  
Conference
International Conference on Crystalline Silicon Photovoltaics (SiliconPV) 2011  
Open Access
DOI
10.1016/j.egypro.2011.06.136
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • PV Produktionstechnologie und Qualitätssicherung

  • Silicium-Photovoltaik

  • Charakterisierung

  • Zellen und Module

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024