• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. On Learning a Control System without Continuous Feedback
 
  • Details
  • Full
Options
2020
Conference Paper
Title

On Learning a Control System without Continuous Feedback

Abstract
We discuss a class of control problems by means of deep neural networks (DNN). Our goal is to develop DNN models that, once trained, are able to produce solutions of such problems at an acceptable error-rate and much faster computation time than an ordinary numerical solver. In the present note we study two such models for the Brockett integrator control problem.
Author(s)
Angelov, Georgi
Sofia University
Georgiev, Bogdan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
ESANN 2020, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Proceedings  
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 2020  
Link
Link
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024