Options
2016
Journal Article
Title
Reliability assessment of confinement models of carbon fiber reinforced polymer-confined concrete
Abstract
This paper presented a review of 84 confinement strength models developed for predicting the ultimate compressive strength of carbon fiber-reinforced polymer-confined concrete subjected to uniaxial compression. Among these models, 64 design-oriented models and 12 analysis-oriented models were selected and evaluated by a comprehensive database including the experimental results of 1475 carbon fiber-reinforced polymer-confined concrete specimens through three statistical indicators: the mean (m), the coefficient of determination Formula, and the root mean square error (s) of the predicted ultimate compressive strength Formula and the experimental ultimate strength Formula. Based on the results of evaluation, 27 design-oriented models were further considered for reliability assessment and structural reliability analysis. Given the performance of strength predictions and the reliability assessment, it was found that for the design purpose, the 27 design-oriented models are reliable for practical predictions of carbon fiber-reinforced polymer-confined concrete structures subjected to uniaxial compression.