• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Topic-Based Document-Level Sentiment Analysis Using Contextual Cues
 
  • Details
  • Full
Options
2021
Journal Article
Title

Topic-Based Document-Level Sentiment Analysis Using Contextual Cues

Abstract
Document-level Sentiment Analysis is a complex task that implies the analysis of large textual content that can incorporate multiple contradictory polarities at the phrase and word levels. Most of the current approaches either represent textual data using pre-trained word embeddings without considering the local context that can be extracted from the dataset, or they detect the overall topic polarity without considering both the local and global context. In this paper, we propose a novel document-topic embedding model, DocTopic2Vec, for document-level polarity detection in large texts by employing general and specific contextual cues obtained through the use of document embeddings (Doc2Vec) and Topic Modeling. In our approach, (1) we use a large dataset with game reviews to create different word embeddings by applying Word2Vec, FastText, and GloVe, (2) we create Doc2Vecs enriched with the local context given by the word embeddings for each review, (3) we construct topic embeddings Topic2Vec using three Topic Modeling algorithms, i.e., LDA, NMF, and LSI, to enhance the global context of the Sentiment Analysis task, (4) for each document and its dominant topic, we build the new DocTopic2Vec by concatenating the Doc2Vec with the Topic2Vec created with the same word embedding. We also design six new Convolutional-based (Bidirectional) Recurrent Deep Neural Network Architectures that show promising results for this task. The proposed DocTopic2Vecs are used to benchmark multiple Machine and Deep Learning models, i.e., a Logistic Regression model, used as a baseline, and 18 Deep Neural Networks Architectures. The experimental results show that the new embedding and the new Deep Neural Network Architectures achieve better results than the baseline, i.e., Logistic Regression and Doc2Vec.
Author(s)
Truica, Ciprian-Octavian
University Politehnica of Bucharest
Apostol, Elena Simona
University Politehnica of Bucharest
Serban, Maria-Luiza
University Politehnica of Bucharest
Paschke, Adrian  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Journal
Mathematics  
Project(s)
PANQURA
AWAKEN
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Deutscher Akademischer Austauschdienst DAAD
Deutscher Akademischer Austauschdienst DAAD
Open Access
File(s)
Download (637.02 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-r-271455
10.3390/math9212722
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • sentiment analysis

  • document-level sentiment analysis

  • document-topic embeddings

  • topic modeling

  • deeplearning architectures

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024