Options
2020
Conference Paper
Title
Real-Time Surf Manoeuvres' Detection Using Smartphones' Inertial Sensors
Abstract
Surfing is currently one of the most popular water sports in the world, both for recreational and competitive level surfers. Surf session analysis is often performed with commercially available devices. However, most of them seem insufficient considering the surfers' needs, by displaying a low number of features, being inaccurate, invasive or not adequate for all surfer levels. Despite the fact that performing manoeuvres is the ultimate goal of surfing, there are no available solutions that enable the identification and characterization of such events. In this work, we propose a novel method to detect manoeuvre events during wave riding periods resorting solely to the inertial sensors embedded in smartphones. The proposed method was able to correctly identify over 95% of all the manoeuvres in the dataset (172 annotated manoeuvres), while achieving a precision of up to 80%, using a session-independent validation approach. These findings demonstrate the suitability and validity of the proposed solution for identification of manoeuvre events in real-world conditions, evidencing a high market potential.