• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Analysis of proximal ALOX5 promoter binding proteins by quantitative proteomics
 
  • Details
  • Full
Options
2020
Journal Article
Titel

Analysis of proximal ALOX5 promoter binding proteins by quantitative proteomics

Abstract
5‐Lipoxygenase (5‐LO) is the initial enzyme in the biosynthesis of leukotrienes, which are mediators involved in pathophysiological conditions such as asthma and certain cancer types. Knowledge of proteins involved in 5‐LO pathway regulation, including gene regulatory proteins, is needed to evaluate all options for therapeutic intervention in these diseases. Here, we present a mass spectrometric screening of ALOX5 promoter‐interacting proteins, obtained by DNA pulldown and label‐free quantitative mass spectrometry. Protein preparations from myeloid and B‐lymphocytic cell lines were screened for promoter DNA interactors. Through statistical analysis, 66 proteins were identified as specific ALOX5 promotor binding proteins. Among those, the 15 most likely candidates for a prominent role in ALOX5 gene regulation are the known ALOX5 interactors Sp1 and Sp3, the related factor Sp2, two Krüppel‐like factors (KLF13 and KLF16) and six other zinc finger proteins (MAZ, PRDM10, VEZF1, ZBTB7A, ZNF281 and ZNF579). Intriguingly, we also identified two helicases (BLM and DHX36) and the proteins hnRNPD and hnRNPK, which are, together with the protein MAZ, known to interact with DNA G‐quadruplex structures. As G‐quadruplexes are implicated in gene regulation, spectroscopic and antibody‐based methods were used to confirm their presence within the GC‐rich sequence of the ALOX5 promoter. In summary, we have systematically characterized the interactome of the ALOX5 promoter, identifying several zinc finger proteins as novel potential ALOX5 gene regulators. Further, we have shown that the ALOX5 promoter can form DNA G‐quadruplex structures, which may play a functional role in ALOX5 gene regulation.
Author(s)
Schlag, K.
Steinhilber, D.
Karas, M.
Sorg, B.L.
Zeitschrift
FEBS journal
Thumbnail Image
DOI
10.1111/febs.15259
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022