Options
2022
Journal Article
Title
Aerobic C−C Bond Cleavage Catalyzed by Whole-Cell Cultures of the White-Rot Fungus Dichomitus albidofuscus
Abstract
Whole-cell cultures of the basidiomycetous white-rot fungus Dichomitus albidofuscus exhibit varying catalytic activity towards aromatic compounds depending on the growth stage. This study reveals the catalytic behavior of mature whole-cell cultures that effectively catalyze a C−C bond cleavage oxidizing toluene, benzaldehyde and acetophenone to phenol. The reaction products were analyzed by GC-MS and NMR techniques. To exclude the de novo formation of phenol by the fungus, its origin has been proven by bioconversion of benzaldehyde-d5. The key step involves an aerobic Baeyer-Villiger type rearrangement where the incorporation of oxygen into the product was confirmed based on isotope labelling experiments with 18O2. Intermediate esters were not found in reaction mixture presumably due to the detected esterase activity in the mycelium as well as in supernatant of the whole-cell cultures. As a result, the sequence of biocatalytic reactions catalyzed by D. albidofuscus for the degradation of toluene via C−C bond cleavage has been disclosed.