• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Texturerkennung und Segmentation mittels eines neuronalen Netzwerks zur optimalen Berechnung von Waveletentwicklungskoeffizienten
 
  • Details
  • Full
Options
1991
Conference Paper
Title

Texturerkennung und Segmentation mittels eines neuronalen Netzwerks zur optimalen Berechnung von Waveletentwicklungskoeffizienten

Abstract
In recent years a broad interest in coupled space-frequency representation envolved as a possible coding for special image analyis problems. The features of these representation enable a significant description of the intrinsic properties of textures. For homogeneous textures a convenient representation is the local fractal dimension. We proved, that a Kohonen feature map network is able to segment image intensity surface values at different resolutions according to their fractal dimension. But for oriented inhomogeneous textures Gabor functions and the functional class of wavelets are a better approach. These functions depend on parameters, which in general are fitted to a given picture analysis problem heuristically. Therefore we suggest to calculate them by a Kohonen feature map in analogy to the fractal dimension.
Author(s)
Brehm, G.
Grossjean, M.
Rueff, M.
Mainwork
Bildverarbeitung '91. Forschen, Entwickeln, Anwenden. Symposium  
Conference
Symposium Bildverarbeitung 1991  
Language
German
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • Bildverarbeitung

  • fractal dimension

  • Fraktal

  • fraktale Dimension

  • Gabor Funktion

  • Kohonen

  • neuronal network

  • neuronales Netzwerk

  • Texturanalyse

  • texture analysis

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024