• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Homogenization of a nonlinear monotone problem in a locally periodic domain via unfolding method
 
  • Details
  • Full
Options
2022
Journal Article
Titel

Homogenization of a nonlinear monotone problem in a locally periodic domain via unfolding method

Abstract
In this paper, the asymptotic behavior of the solutions of a monotone problem posed in a locally periodic oscillating domain is studied. Nonlinear monotone boundary conditions are imposed on the oscillating part of the boundary whereas the Dirichlet condition is considered on the smooth separate part. Using the unfolding method, under natural hypothesis on the regularity of the domain, we prove the weak Lp-convergence of the zero-extended solutions of the nonlinear problem and their flows to the solutions of a limit distributional problem.
Author(s)
Aiyappan, Srinivasan
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Cardone, G.
ARPA, Università degli studi di Napoli Federico II
Perugia, C.
Università degli Studi del Sannio
Prakash, R.
Universidad de Concepcion
Zeitschrift
Nonlinear analysis. Real world applications
Thumbnail Image
DOI
10.1016/j.nonrwa.2022.103537
Language
English
google-scholar
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Tags
  • Asymptotic analysis

  • Homogenization

  • Locally periodic boun...

  • Monotone operators

  • Oscillating boundary

  • Periodic unfolding

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022