• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Denoising the system matrix with deep neural networks for better MPI reconstructions
 
  • Details
  • Full
Options
2025
Journal Article
Title

Denoising the system matrix with deep neural networks for better MPI reconstructions

Abstract
Magnetic Particle Imaging commonly relies on the system matrix (SM) to reconstruct particle distributions, but noise during acquisition limits both its resolution and image quality. Traditionally, noise reduction requires averaging multiple measurements, which increases acquisition time. This paper presents a deep neural network trained on simulated SMs and measured background noise, which effectively generalizes to real-world data. The model recovers higher frequency components of the SM and serves as a general pre-processing step, enhancing image reconstruction quality while reducing the need for extensive averaging, thus accelerating SM acquisition.
Author(s)
Tsanda, Artyom P.
Universitätsklinikum Hamburg-Eppendorf
Scheffler, Konrad
Universitätsklinikum Hamburg-Eppendorf
Reiss, Sarah
Universitätsklinikum Hamburg-Eppendorf
Knopp, Tobias
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
Journal
International journal on magnetic particle imaging : IJMPI  
Conference
International Workshop on Magnetic Particle Imaging 2025  
DOI
10.18416/IJMPI.2025.2503047
Language
English
Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024