• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. An Ultra High-Frequency 8-Channel Neurostimulator Circuit with 68% Peak Power Efficiency
 
  • Details
  • Full
Options
October 1, 2019
Journal Article
Title

An Ultra High-Frequency 8-Channel Neurostimulator Circuit with 68% Peak Power Efficiency

Abstract
In order to recruit neurons in excitable tissue, constant current neural stimulators are commonly used. Recently, ultra high-frequency (UHF) stimulation has been proposed and proven to have the same efficacy as constant-current stimulation. UHF stimulation uses a fundamentally different way of activating the tissue: each stimulation phase is made of a burst of current pulses with adjustable amplitude injected into the tissue at a high (e.g., 1 MHz) frequency. This paper presents the design, integrated circuit (IC) implementation, and measurement results of a power efficient multichannel UHF neural stimulator. The core of the neuro stimulator is based on our previously proposed architecture of an inductor-based buck-boost dc-dc converter without the external output capacitor. The ultimate goal of this work is to increase the power efficiency of the UHF stimulator for multiple-channel operation, while keeping the number of external components minimal. To this end, a number of novel approaches were employed in the integrated circuit design domain. More specifically, a novel zero-current detection scheme is proposed. It allows to remove the free wheel diode typically used in dc-dc converters to prevent current to flow back from the load to the inductor. Furthermore, a gate-driver circuit is implemented which allows the use of thin gate-oxide transistors as high-voltage switches. By doing so, and exploiting the fundamental working principle of the proposed current-controlled UHF stimulator, the need for a high-voltage supply is eliminated and the stimulator is powered up from a 3.5 V input voltage. Both the current detection technique and the gate driving circuit of the current implementation allow to boost the power efficiency up to 300% when compared to previous UHF stimulator works. A peak power efficiency of 68% is achieved, while 8 independent channels with 16 fully configurable electrodes are used. The circuit is implemented in a 0.18 mm HV process, and the total chip area is 3.65 mm 2.
Author(s)
Urso, A.
Dongen, M. van
Serdijn, W.A.
Giagka, Vasiliki  
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM  
Journal
IEEE Transactions on Biomedical Circuits and Systems  
Open Access
DOI
10.1109/TBCAS.2019.2920294
Additional link
Full text
Language
English
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024