Options
2021
Conference Paper
Title
Tool geometry analysis for plunge milling of lead-free CuZn-alloys
Abstract
Plunge milling is a critical process step in mass manufacturing of rectangular shapes in electrical connector components. These shapes are manufactured by drilling a pilot hole and subsequent plunge milling with a radial offset (pitch) one or more times. The plunged cavity serves as guidance for the final broaching cut. In light of new legislative initiatives, the electronics industry is forced to use lead-free Cu-Zn-Alloys for mass manufacturing of these connectors. The plunging tool is deflected due to the higher cutting forces experienced in machining of lead-free CuZn-alloys in comparison to alloys with lead. This results in an offset of the milled cavity and negatively impacts tool guidance in the subsequent broaching process. Therefore, the geometric tolerances cannot be met. In this paper, the effect of tool geometry and cutting parameters on the workpiece geometry in plunge milling is investigated. The effect of the microstructure of the work-piece materials CuZ n37, CuZn42 and CuZn21Si3P on the tool deflection and cutting force components is examined. The tools used vary regarding the design of the corner in terms of the corner chamfer and the inner shaft thickness. Friction between chips in the tools inner flutes and the cavity walls reduced workpiece accuracy. Improvements were achieved by reducing the width of the cutting corner chamfers, using large inner flutes and applying low cutting parameters.