Options
2009
Conference Paper
Title
Geometric algebra computing on the CUDA platform
Abstract
Geometric Algebra (GA) is a mathematical framework that allows a compact, geometrically intuitive description of geometric relationships and algorithms. These algorithms require significant computational power because of the intrinsically high dimensionality of geometric algebras. Algorithms in an n-dimensional GA require 2n elements to be computed for each multivector. GA is not restricted to a maximum of dimensions, so arbitrary geometric algebras can be constructed over a vector space Vn. Since computations in GA can be highly parallelized, the benefits of a parallel computing architecture can lead to a significant speed-up compared to standard CPU implementations, where elements of the algebra have to be calculated sequentially. An upcoming approach of coping with parallel computing is to use general-purpose computation on graphics processing units (GPGPU). In this paper, we focus on the Compute Unified Device Architecture (CUDA) from NVIDIA [9]. We present a code generator that takes as input the description of an arbitrary geometric algebra and produces an implementation of geometric products for the underlying algebra on the CUDA platform.