• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. PHS: A Toolbox for Parallel Hyperparameter Search
 
  • Details
  • Full
Options
2020
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

PHS: A Toolbox for Parallel Hyperparameter Search

Title Supplement
Published on arXiv
Abstract
We introduce an open source python framework named PHS - Parallel Hyperparameter Search to enable hyperparameter optimization on numerous compute instances of any arbitrary python function. This is achieved with minimal modifications inside the target function. Possible applications appear in expensive to evaluate numerical computations which strongly depend on hyperparameters such as machine learning. Bayesian optimization is chosen as a sample efficient method to propose the next query set of parameters.
Author(s)
Habelitz, Peter Michael
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keuper, Janis
IMLA, Hochschule Offenburg
Project(s)
DeToL
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Link
Link
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024