• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. OpenTox predictive toxicology framework
 
  • Details
  • Full
Options
2012
Journal Article
Title

OpenTox predictive toxicology framework

Title Supplement
Toxicological ontology and semantic media wiki-based OpenToxipedia
Abstract
BACKGROUND: The OpenTox Framework, developed by the partners in the OpenTox project (http://www.opentox.org), aims at providing a unified access to toxicity data, predictive models and validation procedures. Interoperability of resources is achieved using a common information model, based on the OpenTox ontologies, describing predictive algorithms, models and toxicity data. As toxicological data may come from different, heterogeneous sources, a deployed ontology, unifying the terminology and the resources, is critical for the rational and reliable organization of the data, and its automatic processing. RESULTS: The following related ontologies have been developed for OpenTox: a) Toxicological ontology - listing the toxicological endpoints; b) Organs system and Effects ontology - addressing organs, targets/examinations and effects observed in in vivo studies; c) ToxML ontology - representing semi-automatic conversion of the ToxML schema; d) OpenTox ontology- representation of OpenTox framework components: chemical compounds, datasets, types of algorithms, models and validation web services; e) ToxLink-ToxCast assays ontology and f) OpenToxipedia community knowledge resource on toxicology terminology.OpenTox components are made available through standardized REST web services, where every compound, data set, and predictive method has a unique resolvable address (URI), used to retrieve its Resource Description Framework (RDF) representation, or to initiate the associated calculations and generate new RDF-based resources.The services support the integration of toxicity and chemical data from various sources, the generation and validation of computer models for toxic effects, seamless integration of new algorithms and scientifically sound validation routines and provide a flexible framework, which allows building arbitrary number of applications, tailored to solving different problems by end users (e.g. toxicologists). AVAILABILITY: The OpenTox toxicological ontology projects may be accessed via the OpenTox ontology development page http://www.opentox.org/dev/ontology; the OpenTox ontology is available as OWL at http://opentox.org/api/1 1/opentox.owl, the ToxML - OWL conversion utility is an open source resource available at http://ambit.svn.sourceforge.net/viewvc/ambit/branches/toxml-utils/
Author(s)
Tcheremenskaia, Olga
Benigni, Romualdo
Nikolova, Ivelina
Jeliazkova, Nina
Escher, Sylvia E.
Batke, Monika
Baier, Thomas
Poroikov, Vladimir
Lagunin, Alexey
Rautenberg, Micha
Hardy, Barry
Journal
Journal of biomedical semantics  
Open Access
File(s)
Download (924.26 KB)
Link
Link
DOI
10.1186/2041-1480-3-S1-S7
10.24406/publica-r-229301
Additional link
Full text
Language
English
Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024