• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Influence Estimation in Multi-Step Process Chains Using Quantum Bayesian Networks
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Influence Estimation in Multi-Step Process Chains Using Quantum Bayesian Networks

Abstract
Digital representatives of physical assets and process steps play a decisive role in analysing properties and evaluating the quality of the process. So-called digital twins acquire all relevant planning and process data, which provide the basis, for example, to investigate path accuracies in manufacturing. Each single process step aims to perform an ideal machining after the specification of a target geometry. However, the practical implementation of a step usually shows deviations from the targeted shape. The machine-learning based method of probabilistic Bayesian networks enables the quality estimation of the holistic process chain as well as improvements by targeted considerations of single steps and influence factors. However, the handling of large-scale Bayesian networks requires a high computational effort, whereas the processing with quantum algorithms holds potential improvements in storage and performance. Based on the issue of path accuracy, this paper considers the modelling and influence estimation for a milling operation including experiments on superconducting quantum hardware.
Author(s)
Selch, Maximilian  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Müssig, Daniel  orcid-logo
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Hänel, Albrecht  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Lässig, Jörg  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Ihlenfeldt, Steffen  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Mainwork
INFORMATIK 2022. Informatik in den Naturwissenschaften  
Conference
Gesellschaft für Informatik (Jahrestagung) 2022  
DOI
10.18420/inf2022_99
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Keyword(s)
  • Bayesian networks

  • digital twin

  • manufacturing

  • path accuracy

  • quantum algorithm

  • quantum circuit

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024