• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Quantum Policy Gradient Algorithm with Optimized Action Decoding
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Quantum Policy Gradient Algorithm with Optimized Action Decoding

Abstract
Quantum machine learning implemented by variational quantum circuits (VQCs) is considered a promising concept for the noisy intermediate-scale quantum computing era. Focusing on applications in quantum reinforcement learning, we propose an action decoding procedure for a quantum policy gradient approach. We introduce a quality measure that enables us to optimize the classical post-processing required for action selection, inspired by local and global quantum measurements. The resulting algorithm demonstrates a significant performance improvement in several benchmark environments. With this technique, we successfully execute a full training routine on a 5-qubit hardware device. Our method introduces only negligible classical overhead and has the potential to improve VQC-based algorithms beyond the field of quantum reinforcement learning.
Author(s)
Meyer, Nico
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Scherer, Daniel David
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Plinge, Axel  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mutschler, Christopher  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Hartmann, Michael J.
Mainwork
40th International Conference on Machine Learning 2023  
Conference
International Conference on Machine Learning 2023  
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024