• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Simulation-based Performance Optimization of V2X Collective Perception by Adaptive Object Filtering
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Simulation-based Performance Optimization of V2X Collective Perception by Adaptive Object Filtering

Abstract
V2X Collective Perception is the principle of exchanging sensor data among V2X-capable stations, such as vehicles or roadside units, by exchanging lists of perceived objects in the 5.9 GHz frequency band for road safety and traffic efficiency. An object can be anything relevant to traffic safety, e.g., vehicles or pedestrians. The current standardization of Collective Perception in Europe considers filtering objects for transmission based on their locally perceived dynamics and freshness to preserve channel resources. However, two remaining problems of object filtering are: information redundancy and adapting object filtering to the available channel resources. In this paper, we combine redundancy mitigation and congestion control-aware filtering. We evaluate the performance of the resulting object filtering techniques by realizing realistic, large-scale simulations of a mid-size city in Germany. We assess the performance using a scoring metric. The results show better information redundancy control and adjustable channel usage for object filtering.
Author(s)
Delooz, Quentin
Technische Hochschule Ingolstadt
Festag, Andreas  
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Vinel, Alexey
Karlsruher Institut für Technologie -KIT-  
Lobo, Silas C.
Technische Hochschule Ingolstadt
Mainwork
34th IEEE Intelligent Vehicles Symposium, IV 2023. Proceedings  
Project(s)
Kooperativ interagierende Automobile mit geringer Kommunikationslatenz  
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Conference
Intelligent Vehicles Symposium 2023  
DOI
10.1109/IV55152.2023.10186788
Language
English
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
Keyword(s)
  • V2X

  • sensor data sharing

  • vehicular communications

  • Collective Perception

  • message generation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024