• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Adaptive Differential Filters for Fast and Communication-Efficient Federated Learning
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Adaptive Differential Filters for Fast and Communication-Efficient Federated Learning

Abstract
Federated learning (FL) scenarios inherently generate a large communication overhead by frequently transmitting neural network updates between clients and server. To minimize the communication cost, introducing sparsity in conjunction with differential updates is a commonly used technique. However, sparse model updates can slow down convergence speed or unintentionally skip certain update aspects, e.g., learned features, if error accumulation is not properly addressed. In this work, we propose a new scaling method operating at the granularity of convolutional filters which 1) compensates for highly sparse updates in FL processes, 2) adapts the local models to new data domains by enhancing some features in the filter space while diminishing others and 3) motivates extra sparsity in updates and thus achieves higher compression ratios, i.e., savings in the overall data transfer. Compared to unscaled updates and previous work, experimental results on different computer vision tasks (Pascal VOC, CIFAR10, Chest X-Ray) and neural networks (ResNets, MobileNets, VGGs) in uni-, bidirectional and partial update FL settings show that the proposed method improves the performance of the central server model while converging faster and reducing the total amount of transmitted data by up to 377×.
Author(s)
Becking, Daniel
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Kirchhoffer, Heiner  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Tech, Gerhard  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Haase, Paul
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Müller, Karsten
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Schwarz, Heiko  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Samek, Wojciech  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Mainwork
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022. Proceedings  
Conference
Conference on Computer Vision and Pattern Recognition Workshops 2022  
Open Access
DOI
10.1109/CVPRW56347.2022.00380
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024