• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Effective pore size and radius of capture for K+ ions in K-channels
 
  • Details
  • Full
Options
2016
Journal Article
Title

Effective pore size and radius of capture for K+ ions in K-channels

Abstract
Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structurss. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 angstrom and r(E) = 4.5-5.2 angstrom, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 angstrom) and the Shaker K-v-channel (r(C) = 0.8 angstrom), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 angstrom and 3.6-4.4 angstrom for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.
Author(s)
Moldenhauer, H.
Diaz-Franulic, I.
Gonzalez-Nilo, F.
Naranjo, D.
Journal
Scientific Reports  
Open Access
Link
Link
DOI
10.1038/srep19893
Additional full text version
Landing Page
Language
English
FCR-CSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024