• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Impact of iron and molybdenum in mono and multicrystalline float-zone silicon solar cells
 
  • Details
  • Full
Options
2008
Conference Paper
Title

Impact of iron and molybdenum in mono and multicrystalline float-zone silicon solar cells

Abstract
This paper investigates the impact of iron (Fe) and molybdenum (Mo) when they are introduced in the feedstock for mono- and multicrystalline Float-Zone (FZ) silicon (Si) growth. Neutron Activation Analysis shows that the segregation coefficient is in agreement with literature values. Lifetime maps on monocrystalline wafers show a uniform lifetime which decreases with the increase of contamination levels. Multicrystalline wafers show low lifetime areas, corresponding to grain boundaries and highly dislocated areas, which are independent from the contamination levels. Intra grain areas have a higher lifetime which changes with the contamination levels. The solar cells show a reduced diffusion length in multicrystalline uncontaminated cells compare to the monocrystalline uncontaminated. In multicrystalline cells the lowest level of Fe introduced (1012 atm/cm3) has hardly any influence, whereas in the Mo-contaminated cells the impact is visible from the lowest level (1011 a tm/cm3). In monocrystalline cells the diffusion length is reduced already at the lowest contamination level of Fe.
Author(s)
Coletti, Gianluca
Geerligs, L.J.
Manshanden, P.
Swanson, C.
Riepe, Stephan  
Warta, Wilhelm  
Arumughan, J.
Kopecek, R.
Mainwork
Gettering and Defect Engineering in Semiconductor Technology XII, GADEST 2007  
Conference
International Autumn Meeting Gettering and Defect Engineering in Semiconductor Technology (GADEST) 2007  
DOI
10.4028/www.scientific.net/SSP.131-133.15
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024