• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Dose-dependent tissue-level characterization of a medical atmospheric pressure argon plasma jet
 
  • Details
  • Full
Options
2019
Journal Article
Title

Dose-dependent tissue-level characterization of a medical atmospheric pressure argon plasma jet

Abstract
Nonthermal treatment with cold atmospheric plasma (CAP) is a promising option for local treatment of chronic-inflammatory and precancerous lesions as well as various mucosal cancer diseases, besides its primary indication for wound healing and antiseptics. Atmospheric pressure plasma jets (APPJs) are versatile plasma sources, some of which are well-characterized and medically approved. The characterization of APPJs, however, is often based on the treatment of simple solutions or even studies on the plasma effluent itself. To better assess the in vivo effects of CAP treatment, this study aims to recapitulate and study the physicochemical tissue-level effects of APPJ treatment on human primary mucosal tissue and tissue models. High resolution on-tissue infrared (IR) thermography and a first-time-performed spatially resolved optical emission spectroscopy (OES) of the APPJ emissions did not identify potentially tissue-harming effects. In this study, electron-spin-resonance (ESR) spectroscopy on human tissue samples, treated with different CAP doses, enabled the measurement and the distribution of CAP-derived radicals in the tissues. The results correlate plasma dosage and the generation of radical species with cell viability and cell proliferation of primary human fibroblasts while demonstrating apoptosis-independent antiproliferative cell effects. Moreover, a dose-dependent increase of cells in the G1 phase of the cell cycle was observed, stressing the likely important role of cell cycle regulation for antiproliferative CAP mechanisms. This study introduces suitable methods for CAP monitoring on tissues and contributes to a better understanding of tissue-derived plasma effects of APPJs.
Author(s)
Weiss, Martin
Barz, Jakob  orcid-logo
Ackermann, Michael
Utz, Raphael
Ghoul, Aya
Weltmann, Klaus-Dieter
Stope, Matthias
Wallwiener, Diethelm
Schenke-Layland, Katja  
Oehr, Christian  
Brucker, Sara
Loskill, Peter  
Journal
ACS applied materials & interfaces  
DOI
10.1021/acsami.9b04803
Language
English
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024