• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Strike the Balance: On-the-Fly Uncertainty Based User Interactions for Long-Term Video Object Segmentation
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Strike the Balance: On-the-Fly Uncertainty Based User Interactions for Long-Term Video Object Segmentation

Abstract
In this paper, we introduce a variant of video object segmentation (VOS) that bridges interactive and semi-automatic approaches, termed Lazy Video Object Segmentation (ziVOS). In contrast, to both tasks, which handle video object segmentation in an off-line manner (i.e., pre-recorded sequences), we propose through ziVOS to target online recorded sequences. Here, we strive to strike a balance between performance and robustness for long-term scenarios by soliciting user feedback’s on-the-fly during the segmentation process. Hence, we aim to maximize the tracking duration of an object of interest, while requiring minimal user corrections to maintain tracking over an extended period. We propose Lazy-XMem as a competitive baseline, that estimates the uncertainty of the tracking state to determine whether a user interaction is necessary to refine the model’s prediction. We introduce complementary metrics alongside those already established in the field, to quantitatively assess the performance of our method and the user’s workload. We evaluate our approach using the recently introduced LVOS dataset, which offers numerous long-term videos. Our code is available at https://github.com/Vujas-Eteph/LazyXMem.
Author(s)
Vujasinovic, Stéphane  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Becker, Stefan  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bullinger, Sebastian  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Scherer-Negenborn, Norbert  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Arens, Michael  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Stiefelhagen, Rainer  
Karlsruher Institut für Technologie
Mainwork
Computer Vision - ACCV 2024. 17th Asian Conference on Computer Vision. Proceedings. Pt.II  
Conference
Asian Conference on Computer Vision 2024  
DOI
10.1007/978-981-96-0901-7_24
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024