• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Uncertainty quantification in a heterogeneous fluvial sandstone reservoir using GPU-based Monte Carlo simulation
 
  • Details
  • Full
Options
2023
Journal Article
Title

Uncertainty quantification in a heterogeneous fluvial sandstone reservoir using GPU-based Monte Carlo simulation

Abstract
The efficient operation and management of a geothermal project can be largely affected by geological, physical, operational and economic uncertainties. Systematic uncertainty quantification (UQ) involving these parameters helps to determine the probability of the focused outputs, e.g., energy production, Net Present Value (NPV), etc. However, how to efficiently assess the specific impacts of different uncertain parameters on the outputs of a geothermal project is still not clear. In this study, we performed a comprehensive UQ to a low-enthalpy geothermal reservoir using the GPU implementation of the Delft Advanced Research Terra Simulator (DARTS) framework with stochastic Monte Carlo samplings of uncertain parameters. With processing the simulation results, large uncertainties have been found in the production temperature, pressure drop, produced energy and NPV. It is also clear from the analysis that salinity influences the producing energy and NPV via changing the amount of energy carried in the fluid. Our work shows that the uncertainty in NPV is much larger than that in produced energy, as more uncertain factors were encompassed in NPV evaluation. An attempt to substitute original 3D models with upscaled 2D models in UQ demonstrates significant differences in the stochastic response of these two approaches in representation of realistic heterogeneity. The GPU version of DARTS significantly improved the simulation performance, which guarantees the full set (10,000 times) UQ with a large model (circa 3.2 million cells) finished within a day. With this study, the importance of UQ to geothermal field development is comprehensively addressed. This work provides a framework for assessing the impacts of uncertain parameters on the concerning system output of a geothermal project and will facilitate analyses with similar procedures.
Author(s)
Wang, Yang
TU Delft  
Voskov, Denis
TU Delft  
Daniilidis, Alexandros
Khait, Mark
TU Delft  
Saeid, Sanaz
TU Delft  
Bruhn, David  orcid-logo
Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG  
Journal
Geothermics  
Open Access
DOI
10.1016/j.geothermics.2023.102773
Language
English
Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024