• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. FRCSyn-onGoing: Benchmarking and Comprehensive Evaluation of Real and Synthetic Data to Improve Face Recognition Systems
 
  • Details
  • Full
Options
2024
Journal Article
Title

FRCSyn-onGoing: Benchmarking and Comprehensive Evaluation of Real and Synthetic Data to Improve Face Recognition Systems

Abstract
This article presents FRCSyn-onGoing, an ongoing challenge for face recognition where researchers can easily benchmark their systems against the state of the art in an open common platform using large-scale public databases and standard experimental protocols. FRCSyn-onGoing is based on the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first face recognition international challenge aiming to explore the use of real and synthetic data independently, and also their fusion, in order to address existing limitations in the technology. Specifically, FRCSyn-onGoing targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. To enhance face recognition performance, FRCSyn-onGoing strongly advocates for information fusion at various levels, starting from the input data, where a mix of real and synthetic domains is proposed for specific tasks of the challenge. Additionally, participating teams are allowed to fuse diverse networks within their proposed systems to improve the performance. In this article, we provide a comprehensive evaluation of the face recognition systems and results achieved so far in FRCSyn-onGoing. The results obtained in FRCSyn-onGoing, together with the proposed public ongoing benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.
Author(s)
Melzi, Pietro
Universidad Autonoma de Madrid
Tolosana, Ruben
Universidad Autonoma de Madrid
Vera-Rodriguez, Ruben
Universidad Autonoma de Madrid
Minchul, Kim
Michigan State University
Rathgeb, Christian
Hochschule Darmstadt  
Liu, Xiaoming
Michigan State University
DeAndres-Tame, Ivan
Universidad Autonoma de Madrid
Morales , Aythami
Universidad Autonoma de Madrid
Fierrez, Julian
Universidad Autonoma de Madrid
Ortega Heras, Javier
Universidad Autonoma de Madrid
Zhao, Weisong
IIE, CAS
Zhu, Xiangyu
MAIS, CASIA
Yan, Zheyu
MAIS, CASIA
Zhang, Xiao-Yu
IIE, CAS
Wu, Jinlin
CAIR, HKISI, CAS
Lei, Zhen
MAIS, CASIA
Tripathi, Suvidha
LENS, Inc.
Kothari, Mahak
LENS, Inc.
Zama, Md Haider
LENS, Inc.
Deb, Debayan
LENS, Inc.
Biesseck, Bernardo
Federal University of Paraná
Vidal, Pedro
Federal University of Paraná
Granada, Roger
unico - idTech
Fickel, Guilherme
unico - idTech
Führ, Gustavo
unico - idTech
Menotti, David
Federal University of Paraná
Unnervik, Alexander
Idiap Research Institute
George, Anjith
Idiap Research Institute
Ecabert, Christophe
Idiap Research Institute
Shahreza, Hatef Otroshi
Idiap Research Institute
Rahimi, Parsa
Idiap Research Institute
Marcel, Sébastien
Idiap Research Institute
Sarridis, Ioannis
Centre for Research and Technology Hellas
Koutlis, Christos
Centre for Research and Technology Hellas
Baltsou, Georgia
Centre for Research and Technology Hellas
Papadopoulos, Symeon
Centre for Research and Technology Hellas
Diou, Christos
Harokopio University of Athens
Domenico, Nicolò Di
University of Bologna  
Borghi, Guido
University of Bologna  
Pellegrini, Lorenzo
University of Bologna  
Mas, Enrique
Facephi
Sánchez-Pérez, Ángela
Facephi
Atzori, Andrea
University of Cagliari
Fenu, Gianni
University of Cagliari
Marras, Mirko
University of Cagliari
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Journal
An international journal on information fusion  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst -HMWK-  
Open Access
File(s)
Download (3.16 MB)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
DOI
10.1016/j.inffus.2024.102322
10.24406/publica-2805
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine learning (ML)

  • LTA: Interactive decision-making support and assistance systems

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • LTA: Generation, capture, processing, and output of images and 3D models

  • Biometrics

  • Face recognition

  • Generative Adversarial Networks (GAN)

  • Deepl learning

  • Machine learning

  • ATHENE

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024