• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Metrologically interpretable feature extraction for industrial machine vision using generative deep learning
 
  • Details
  • Full
Options
2022
Journal Article
Title

Metrologically interpretable feature extraction for industrial machine vision using generative deep learning

Abstract
Deep Learning (DL) is leveraged in a growing number of industrial applications. One strength is the data-driven ability to extract characteristic features from complex inputs in form of a latent vector without the need for closed formulation or derivation from a priori known quantities. This work proposes a framework based on generative DL methods to interpret these latent vectors as metrological quantities. The approach is explored in the machine vision domain by implementing a model utilising style-based adversarial latent autoencoders, principal component analysis, and logistic regression. It is successfully evaluated on an industrial image set of aluminium die casting surfaces.
Author(s)
Schmitt, Robert  
Rheinisch-Westfälische Technische Hochschule Aachen  
Wolfschläger, D.
Rheinisch-Westfälische Technische Hochschule Aachen
Masliankova, E.
Rheinisch-Westfälische Technische Hochschule Aachen
Montavon, B.
Rheinisch-Westfälische Technische Hochschule Aachen
Journal
CIRP Annals. Manufacturing Technology  
DOI
10.1016/j.cirp.2022.03.016
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
Keyword(s)
  • Artificial Intelligence

  • Metrology

  • Surfaceanalysis

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024