• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Cross-validation and bootstrapping are unreliable in small sample classification
 
  • Details
  • Full
Options
2008
Journal Article
Title

Cross-validation and bootstrapping are unreliable in small sample classification

Abstract
The interest in statistical classification for critical applications such as diagnoses of patient samples based on supervised learning is rapidly growing. To gain acceptance in applications where the subsequent decisions have serious consequences, e.g. choice of cancer therapy, any such decision support system must come with a reliable performance estimate. Tailored for small sample problems, cross-validation (CV) and bootstrapping (BTS) have been the most commonly used methods to determine such estimates in virtually all branches of science for the last 20 years. Here, we address the often overlooked fact that the uncertainty in a point estimate obtained with CV and BTS is unknown and quite large for small sample classification problems encountered in biomedical applications and elsewhere. To avoid this fundamental problem of employing CV and BTS, until improved alternatives have been established, we suggest that the final classification performance always should be reported in the form of a Bayesian confidence interval obtained from a simple holdout test or using some other method that yields conservative measures of the uncertainty.
Author(s)
Isaksson, A.
Wallmann, M.
Göransson, H.
Gustafsson, M.G.
Journal
Pattern recognition letters  
Open Access
DOI
10.1016/j.patrec.2008.06.018
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024