• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Mixed mercaptocarboxylic acid shells provide stable dispersions of inpzns/znse/zns multishell quantum dots in aqueous media
 
  • Details
  • Full
Options
2020
Journal Article
Titel

Mixed mercaptocarboxylic acid shells provide stable dispersions of inpzns/znse/zns multishell quantum dots in aqueous media

Abstract
Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34%.
Author(s)
Heyne, B.
Arlt, K.
Geßner, A.
Richter, A.F.
Döblinger, M.
Feldmann, J.
Taubert, A.
Wedel, A.
Zeitschrift
Nanomaterials
Project(s)
Endoprove
ELQ-LED
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Thumbnail Image
DOI
10.3390/nano10091858
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Angewandte Polymerforschung IAP
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022