• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Improving the performance of the modal holographic wavefront sensor by adapting to prevailing turbulence conditions: experimental verification
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Improving the performance of the modal holographic wavefront sensor by adapting to prevailing turbulence conditions: experimental verification

Abstract
The modal holographic wavefront sensor offers a promising alternative to established wavefront sensing techniques. Since the strengths of individual aberration modes are directly measured, there is no need for time-consuming signal processing and wavefront reconstruction. Bandwidths up to three orders of magnitude higher than those of commercial wavefront sensors can in principle be achieved. However, in practice the accuracy of measurements is compromised by intermodal crosstalk, which arises when the wavefront exhibits additional aberrations to those encoded in the modal wavefront sensor. This issue is particularly prominent when measuring wavefronts disturbed by atmospheric turbulence. To mitigate the effects of intermodal crosstalk, a procedure to optimize the sensor design for prevailing atmospheric turbulence conditions has been proposed. In this paper, we experimentally investigate the effectiveness of this method. We describe the fabrication of a holographic wavefront sensor consisting of a thin phase transmission holographic grating. In an optical testbed, defined wavefront deformations are generated using a spatial light modulator, and the wavefront sensor is used to measure these disturbances. The measurement error is determined for different sensor designs.
Author(s)
Zepp, Andreas  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Branigan, Emma
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Murphy, Kevin
Gladysz, Szymon  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
Environmental Effects on Light Propagation and Adaptive Systems VII  
Conference
Conference "Environmental Effects on Light Propagation and Adaptive Systems" 2024  
DOI
10.1117/12.3033917
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024