• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Structural phase transitions of barium halide nanocrystals in fluorozirconate glasses studied by Raman spectroscopy
 
  • Details
  • Full
Options
2011
Journal Article
Title

Structural phase transitions of barium halide nanocrystals in fluorozirconate glasses studied by Raman spectroscopy

Abstract
Rare-earth-doped fluorochlorozirconate (FCZ) and fluorobromozirconate (FBZ) glasses developed for fluorescence applications are analyzed, with particular attention paid to their phonon energy spectra. After thermal processing of as-made Eu-doped FCZ and FBZ glasses, Raman measurements show additional phonon bands at low phonon energies, indicating the formation of BaCl2 and BaBr2 nanocrystals, respectively. The phonon bands can be assigned to hexagonal, orthorhombic, or a mixture of both phases of BaCl2 and BaBr2 depending on the annealing conditions. Apart from line broadening, the Raman spectra of the orthorhombic nanocrystals agree well with those of BaCl2 and BaBr2 bulk crystals, while the metastable hexagonal phases of BaCl2 and BaBr2 are investigated only in appropriately treated FCZ and FBZ glasses, respectively. The experimental Raman spectra are compared to first principle studies of the phonon frequencies of the hexagonal and orthorhombic phases of both barium halides, showing good agreement.
Author(s)
Pfau, C.
Bohley, C.
Miclea, P.-T.
Schweizer, S.
Journal
Journal of applied physics  
DOI
10.1063/1.3580281
Language
English
CSP
Fraunhofer-Institut für Werkstoffmechanik IWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024