• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Early detection and identification of undesirable states in chemical plants using neural networks
 
  • Details
  • Full
Options
1999
Conference Paper
Title

Early detection and identification of undesirable states in chemical plants using neural networks

Abstract
The suitability of pattern recognition for safety diagnosis of chemical plants is discussed. Experiments in a miniplant and with a process simulator are carried out. The process characteristics are treated with different recognition methods and classified with the aid of expert know how. Afterwards, the trained system can be used for process diagnosis. The capability of neural networks for this problem can be shown.
Author(s)
Neumann, J.
Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT  
Deerberg, Görge  
Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT  
Schlüter, Stefan  orcid-logo
Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT  
Schmitt, W.
Forschungszentrum Rossendorf
Hessel, G.
Forschungszentrum Rossendorf
Mainwork
Scientific Computing in Chemical Engineering II. Vol.2: Simulation, Image Processing, Optimization and Control  
Conference
Workshop on Scientific Computing in Chemical Engineering 1999  
Language
English
Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT  
Keyword(s)
  • Fehlerdiagnose

  • Früherkennung

  • neuronales Netzwerk

  • Sicherheitstechnik

  • exotherme Reaktion

  • fault diagnosis

  • early detection

  • neural network

  • safety technology

  • exothermic reaction

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024