• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Organic membranes for selectivity enhancement of metal oxide gas sensors
 
  • Details
  • Full
Options
2016
Journal Article
Title

Organic membranes for selectivity enhancement of metal oxide gas sensors

Abstract
We present the characterization of organic polyolefin and thermoplastic membranes for the enhancement of the selectivity of metal oxide (MOX) gas sensors. The experimental study is done based on theoretical considerations of the membrane characteristics. Through a broad screening of dense symmetric homo-and copolymers with different functional groups, the intrinsic properties such as the mobility or the transport of gases through the matrix were examined in detail. A subset of application-relevant gases was chosen for the experimental part of the study: H2, CH4, CO, CO2, NO2, ethanol, acetone, acetaldehyde, and water vapor. The gases have similar kinetic diameters and are therefore difficult to separate but have different functional groups and polarity. The concentration of the gases was based on the international indicative limit values (TWA, STEL). From the results, a simple relationship was to be found to estimate the permeability of various polar and nonpolar gases through gas permeation (GP) membranes. We used a broadband metal oxide gas sensor with a sensitive layer made of tin oxide with palladium catalyst (SnO2:Pd). Our aim was to develop a low-cost symmetrical dense polymer membrane to selectively detect gases with a MOX sensor.
Author(s)
Graunke, Thorsten  
Schmitt, Katrin  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Wöllenstein, Jürgen  
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Journal
Journal of sensors  
Open Access
Link
Link
DOI
10.1155/2016/2435945
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Physikalische Messtechnik IPM  
Keyword(s)
  • chemical sensors

  • gas detectors

  • Membranes

  • metal oxide gas sensor

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024