• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Uncovering Chains of Infections through Spatio-Temporal and Visual Analysis of COVID-19 Contact Traces
 
  • Details
  • Full
Options
2022
Journal Article
Title

Uncovering Chains of Infections through Spatio-Temporal and Visual Analysis of COVID-19 Contact Traces

Abstract
A major challenge for departments of public health (DPHs) in dealing with the ongoing COVID-19 pandemic is tracing contacts in exponentially growing SARS-CoV-2 infection clusters. Prevention of further disease spread requires a comprehensive registration of the connections between individuals and clusters. Due to the high number of infections with unknown origin, the healthcare analysts need to identify connected cases and clusters through accumulated epidemiological knowledge and the metadata of the infections in their database. Here we contribute a visual analytics dashboard to identify, assess and visualize clusters in COVID-19 contact tracing networks. Additionally, we demonstrate how graph-based machine learning methods can be used to find missing links between infection clusters and thus support the mission to get a comprehensive view on infection events. This work was developed through close collaboration with DPHs in Germany. We argue how our dashboard supports the identification of clusters by public health experts, discuss ongoing developments and possible extensions.
Author(s)
Antweiler, Dario  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sessler, David  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Rossknecht, Maxim
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Abb, Benjamin
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Ginzel, Sebastian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Kohlhammer, Jörn  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Journal
Computers and Graphics  
Project(s)
ML2R  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Open Access
DOI
10.1016/j.cag.2022.05.013
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Lead Topic: Digitized Work

  • Lead Topic: Individual Health

  • Research Line: Computer graphics (CG)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine Learning (ML)

  • Medical applications

  • Interactive information visualization

  • Geodata visualization

  • Machine learning

  • Decision support

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024