• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Model-Based Design of Experiments for High-Dimensional Inputs Supported by Machine-Learning Methods
 
  • Details
  • Full
Options
2021
Journal Article
Title

Model-Based Design of Experiments for High-Dimensional Inputs Supported by Machine-Learning Methods

Abstract
Algorithms that compute locally optimal continuous designs often rely on a finite design space or on the repeated solution of difficult non-linear programs. Both approaches require extensive evaluations of the Jacobian Df of the underlying model. These evaluations are a heavy computational burden. Based on the Kiefer-Wolfowitz Equivalence Theorem, we present a novel design of experiments algorithm that computes optimal designs in a continuous design space. For this iterative algorithm, we combine an adaptive Bayes-like sampling scheme with Gaussian process regression to approximate the directional derivative of the design criterion. The approximation allows us to adaptively select new design points on which to evaluate the model. The adaptive selection of the algorithm requires significantly less evaluations of Df and reduces the runtime of the computations. We show the viability of the new algorithm on two examples from chemical engineering.
Author(s)
Seufert, Philipp  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Schwientek, Jan  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Bortz, Michael  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Processes  
Open Access
DOI
10.3390/pr9030508
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024