Options
1989
Journal Article
Title
Proton diffusion along the membrane surface of thylakoids is not enhanced over that in bulk water.
Other Title
Die Protonendiffusion an der Membranoberfläche von Thylakoiden ist gegenüber der in der Wassermasse nicht erhöht
Abstract
In photosynthesis and respiration ATP synthesis is powered by a transmembrane protonmotive force. Membrane bound proton pumps and proton translocating ATPsynthases are coupled by lateral proton flow. Whether it leads through the aqueous bulk phases (chemiosmotic theory) or whether it is confined to the membrane or the membrane water interface, is still controversial. Another related controversy is whether or not proton diffusion along the interface between a phospholipid membrane and water is enhanced over the one in bulk water. Thylakoid membranes of plant chloroplasts are intrinsically closely apposed (about 5 nm). To study lateral proton diffusion along the narrow interfacial domain between adjacent thylakoid membranes, we stimulated the proton pumps by a flash of light. This generates an alkalinization jump. In the absence of ADP the membrane is relatively proton tight. Therefore, the alkalinization jump relaxes into the medium. The relaxation kinetics as function of pH and added b uffers were studied by flash spectrophotometry. The results were compared with a theory dealing with the diffusion of protons, hydroxyl ions, and mobile buffers plus the action of fixed buffers. We came to the conclusion that the lateral diffusion coefficient both, for H high plus and for OH high minus was less or of same magnitude as in bulk water.