• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Impact of perovskite subcell breakdown on the performance of perovskite/perovskite/silicon triple-junction solar cells
 
  • Details
  • Full
Options
2024
Journal Article
Title

Impact of perovskite subcell breakdown on the performance of perovskite/perovskite/silicon triple-junction solar cells

Abstract
Perovskite-based triple-junction solar cells have recently gained significant attention and are rapidly developing, thanks to the insights gained from the advancement in its dual-junction counterparts. However, employing perovskite materials in multijunction solar cells with more than two junctions brings new challenges that have not yet been addressed. One aspect is the possibility of reverse bias breakdown of perovskite subcells during operation of the triple-junction device. This is more relevant for triple-junction solar cells because a higher reverse voltage might drop at perovskite subcells compared to the case of dual-junction solar cells. Herein, the breakdown voltages of the two perovskite subcells in perovskite/perovskite/silicon triple-junction solar cells are determined by progressively increasing the reverse bias applied to the subcells in a single-junction architecture during current-voltage measurements and monitoring the appearance of shunts using illuminated lock-in thermography measurements. Furthermore, to analyze the effect on the final triple-junction solar cell, the triple-junction device is brought in different current limitation conditions. It is shown that the subcell breakdown can happen during the operation of the triple-junction solar cell, especially for the case where the perovskite top cell is limiting the overall current of the device. This effect is less severe when the middle perovskite cell limits the current due to the absence of a direct contact with the silver metallization which has shown to be the major degradation site during reverse biasing of perovskite solar cells. Finally, there is no concern regarding breakdown of the silicon bottom cell due to the higher breakdown voltage of silicon compared to perovskite.
Author(s)
Heydarian, Maryamsadat
Fraunhofer-Institut für Solare Energiesysteme ISE  
Bett, Alexander J.
Fraunhofer-Institut für Solare Energiesysteme ISE  
Meßmer, Christoph Alexander  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Aulich, Johanna
Fraunhofer-Institut für Solare Energiesysteme ISE  
Fischer, Oliver  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Heydarian, Minasadat
Fraunhofer-Institut für Solare Energiesysteme ISE  
Gupta, Yashika
Fraunhofer-Institut für Solare Energiesysteme ISE  
Schulze, Patricia  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Borchert, Anna Juliane  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Schindler, Florian  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Schubert, Martin  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Glunz, Stefan  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Journal
Solar RRL  
Open Access
File(s)
Download (2.76 MB)
Rights
CC BY-NC 4.0: Creative Commons Attribution-NonCommercial
DOI
10.1002/solr.202400376
10.24406/publica-3651
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024