• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Black silicon significantly enhances phosphorus diffusion gettering
 
  • Details
  • Full
Options
2018
Journal Article
Title

Black silicon significantly enhances phosphorus diffusion gettering

Abstract
Black silicon (b-Si) is currently being adopted by several fields of technology, and its potential has already been demonstrated in various applications. We show here that the increased surface area of b-Si, which has generally been considered as a drawback e.g. in applications that require efficient surface passivation, can be used as an advantage: it enhances gettering of deleterious metal impurities. We demonstrate experimentally that interstitial iron concentration in intentionally contaminated silicon wafers reduces from 1.7 × 1013 cm−3 to less than 1010 cm−3 via b-Si gettering coupled with phosphorus diffusion from a POCl3 source. Simultaneously, the minority carrier lifetime increases from less than 2 ms of a contaminated wafer to more than 1.5 ms. A series of different low temperature anneals suggests segregation into the phosphorus-doped layer to be the main gettering mechanism, a notion which paves the way of adopting these results into predictive process simulators. This conclusion is supported by simulations which show that the b-Si needles are entirely heavily-doped with phosphorus after a typical POCl3 diffusion process, promoting iron segregation. Potential benefits of enhanced gettering by b-Si include the possibility to use lower quality silicon in high-efficiency photovoltaic devices.
Author(s)
Pasanen, T.
Laine, H.S.
Vähänissi, V.
Schön, Jonas  
Savin, Hele
Journal
Scientific Reports  
Open Access
Link
Link
DOI
10.1038/s41598-018-20494-y
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Solarzellen - Entwicklung und Charakterisierung

  • Photovoltaik

  • Silicium-Photovoltaik

  • Charakterisierung von Prozess- und Silicium-Materialien

  • Dotierung und Diffusion

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024