• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Charge transport and electroluminescence of silicon nanocrystals/SiO2 superlattices
 
  • Details
  • Full
Options
2013
Journal Article
Title

Charge transport and electroluminescence of silicon nanocrystals/SiO2 superlattices

Abstract
Charge transport and electroluminescence mechanisms in Si-rich Si oxynitride/silicon oxide (SRON/SiO2) superlattices deposited on p-type Si substrate are reported. The superlattice structures were deposited by plasma-enhanced chemical-vapor deposition and subsequently annealed at 1150 °C to precipitate and crystallize the Si excess into Si nanocrystals. The dependence of the electrical conduction on the applied voltage and temperature was found to be well described by a Poole-Frenkel transport mechanism over a wide voltage range. On the other hand, the observed dependence of the electroluminescence on the SRON layer thickness is a clear proof of quantum confinement and was attributed to an excitonic radiative recombination taking place in the confined states within the Si quantum dots. A model is proposed based on thermal hopping of electrons between the quantum dots acting as trap states (Poole-Frenkel). A correlation between carrier transport and electroluminescence has been established considering impact ionization of high-kinetic energy electrons on the Si quantum dots.
Author(s)
López-Vidrier, Julian
Berencén, Y.
Hernández, S.
Blázquez, O.
Gutsch, Sebastian
Laube, J.
Hiller, D.
Löper, Philipp
Schnabel, Manuel
Janz, Stefan  
Zacharias, Margit
Garrido, B.
Journal
Journal of applied physics  
DOI
10.1063/1.4826898
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Solarzellen - Entwicklung und Charakterisierung

  • Silicium-Photovoltaik

  • Farbstoff

  • Organische und Neuartige Solarzellen

  • Herstellung und Analyse von hocheffizienten Solarzellen

  • Tandemsolarzellen auf kristallinem Silicium

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024