• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Parameter state estimation for bistatic sonar systems
 
  • Details
  • Full
Options
2018
Journal Article
Title

Parameter state estimation for bistatic sonar systems

Abstract
The use of autonomous underwater vehicles (AUVs) cooperating in a network for anti-submarine warfare surveillance operations is of topical interest. Each AUV has to localise and track targets (submarines) robustly and precisely. This can be realised by a bistatic sonar configuration. The precise knowledge of the bistatic system parameters is mandatory for target tracking. These are in particular the positions of the acoustic sources, transmission times, and the position and heading of the AUV sonar sensor. However, these parameters often are not precisely known, e.g. for non-cooperative acoustic sources or due to navigation uncertainties of the AUV. Therefore, the authors consider the inverse problem, i.e. they estimate the bistatic system parameters by exploiting sonar echoes from known stationary `targets' like wrecks or small islands. Their implementation of the estimation method is based on the multihypothesis tracking technique. Results are discussed for two applications: The first one is estimation of the parameters of a non-cooperative source. The second application focuses on the estimation of the receiver parameters; in particular they show that their approach can be used to increase robustness of AUV navigation. Their algorithms are tested with simulated and real data recorded by the Centre for Maritime Research and Experimentation.
Author(s)
Broetje, Martina
Broetje, Lars
Ehlers, Frank
Journal
IET radar, sonar & navigation  
DOI
10.1049/iet-rsn.2017.0426
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024