• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Data-driven accelerated parameter identification for Chaboche-type visco-plastic material models to describe the relaxation behavior of copper alloys
 
  • Details
  • Full
Options
2024
Journal Article
Title

Data-driven accelerated parameter identification for Chaboche-type visco-plastic material models to describe the relaxation behavior of copper alloys

Abstract
Background Calibrating material models to experimental measurements is crucial for realistic omputational analysis of components. For complex material models, however, optimization-based identification procedures can become time-consuming, particularly if the optimization problem is ill-posed. Objective The objective of this paper is to assess the feasibility of using machine learning to identify the parameters of a Chaboche-type material model that describes copper alloys. Specifically, we apply and analyze this dentification approach using short-term uniaxial relaxation tests on a C19010 copper alloy. Methods A genetic algorithm forms the basis for identifying the parameters of the Chaboche-type material model. The approach is accelerated by replacing the numerical simulation of the experimental setup by a neural network surrogate. The neural networks-based approach is compared against a classic approach using both, synthetic and experimental data. Results The results show that on the one hand, a sufficiently accurate identification of the material model parameters can be achieved by a classic but time-consuming genetic algorithm. On the other hand, it is shown that machine learning enables a much more time-efficient identification procedure, however, suffering from the ill-posedness of the identification problem. Conclusion Compared to classic parameter identification approaches, machine learning techniques can significantly accelerate the identification procedure for parameters of Chaboche-type material models with acceptable loss of accuracy.
Author(s)
Morand, Lukas  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Norouzi, Ebrahim
Fraunhofer-Institut für Werkstoffmechanik IWM  
Weber, Matthias  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Butz, Alexander  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Helm, Dirk  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Journal
Experimental mechanics  
Project(s)
Qualifizierung von standardisierten Langzeitversuchen an Kupferwerkstoffen zur wirtschaftlichen Bestimmung von Materialparametern für CAE-Anwendungen  
Funder
Bundesministerium für Wirtschaft und Klimaschutz -BMWK-
Open Access
DOI
10.1007/s11340-024-01057-x
Link
Link
Link
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
Keyword(s)
  • Chaboche-type model

  • Copper alloy

  • Genetic algorithm

  • Ill-posed problem

  • Machine learning

  • Parameter identification

  • Neural networks

  • Relaxation test

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024