Options
2024
Journal Article
Title
Effect of Inhomogeneous Loads on the Mechanics of a PV Modules
Abstract
In contrast to homogeneous mechanical load according to IEC 61215, photovoltaic modules in the field are mainly exposed to inhomogeneous loads like snow or wind. This paper deals with such inhomogeneous loads using computational fluid dynamics and finite element method simulations. Temperatures different to room temperature and the choice of encapsulates have significant influences on the thermomechanics of a photovoltaic module in case of snow load. Polyolefin is the encapsulant with the lowest storage modulus and has the lowest overall stress in solar cells and glass down to -30°C. Furthermore, with colder temperatures, the first principal stress decreases in solar cells but increases in the glass. For wind loads, the impact of module orientation, wind direction, module inclination angle, and wind speed is analyzed. A crosswind scenario is found to be most critical. Additionally, as a rule of thumb, higher module inclination angles result in higher stresses. Finally, general thermomechanical rules are extracted allowing for a deeper understanding of the underlying effects and therefore help to build more robust modules in the future.
Open Access
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
Language
English