• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Nonlinear Frequency Conversion. Special Section Guest Editorial
 
  • Details
  • Full
Options
2018
Editorial
Title

Nonlinear Frequency Conversion. Special Section Guest Editorial

Abstract
This guest editorial summarizes the Special Section on Nonlinear Frequency Conversion. The papers that constitute the Optical Engineering Special Section on Nonlinear Frequency Conversion reveal a multifaceted, constantly evolving field. Nonlinear optical phenomena appear in an array of applications, including optical signal processing, spectroscopy, and the generation of designer wavelengths. As evidenced by the papers published here, advances in the field continue to rely on research in such areas as the fundamental study of nonlinear effects, theoretical development and modeling, materials development, and device concepts. Record output power levels and extremely broad spectral coverage are achieved using a femtosecond Yb fiber laser to synchronously pump an optical parametric oscillator based on the exotic nonlinear crystal mercury thiogallate, HgGa2S4. Next, a novel phase-matching scheme for third harmonic generation is proposed based on the use of engineered dispersion in multilayered metamaterials to compensate for natural material dispersion. Broadband supercontinuum generation is demonstrated by pumping a single-mode ZBLAN fiber with a femtosecond erbium-doped fiber laser that is mode locked through the use of a carbon-nanotube-based saturable absorber. The dispersion properties of a single crystal sapphire fiber with a unique windmill microstructure are analyzed, and single-mode operation over a broad spectral range enables the generation of infrared supercontinuum characterized by dense frequency combs. As a growing number of laser applications demand spectral output deeper and deeper into the mid-infrared at ever-increasing power levels, the power-handling limits of chalcogenide fibers will be of vital importance. The final paper in this special section examines the optical nonlinearities and thermal effects that will ultimately limit the power transmission in various operating regimes, predicting delivery of >100W if sufficiently low losses and efficient cooling can be achieved.
Author(s)
Peterson, Rita D.
Kieleck, Christelle  
Schunemann, Peter G.
Journal
Optical engineering  
File(s)
Download (318.24 KB)
Rights
Use according to copyright law
DOI
10.24406/publica-r-256221
10.1117/1.OE.57.11.111801
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024