• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Ferrites in Transfer-Molded Power SiPs: Challenges in Packaging
 
  • Details
  • Full
Options
2020
Journal Article
Title

Ferrites in Transfer-Molded Power SiPs: Challenges in Packaging

Abstract
Transfer-molding process is enjoying growing interest when aiming for novel high-power density system-in-packages (power SiPs), where not only transistors and diodes but also drivers, passives, coils, and transformers are supposed to be integrated in one package. Encapsulating modules in a transfer-molding process induces higher mechanical load onto module components compared with conventional silicone potting. Previous investigations have shown that integration of delicate components as ferrite cores into molded packages is not as trivial as integration of conventional surface-mount devices or power semiconductors; the brittle ferrites tend to fracture during the encapsulation process, resulting in higher ferrite core loss. The current study aims to identify main root causes for ferrite core cracking during manufacturing of molded power SiPs. The test vehicle is a symmetrical printed circuit board-based package with three pairs of E-shaped ferrite cores. The epoxy molding compound deployed here is characterized to enable filling simulations. Because technical datasheets of ferrites typically lack specifications of mechanical properties, ferrite materials are analyzed in more detail. Filling simulations and thermomechanical simulations are performed to gain insight into process-induced stress, which may induce cracks in the ferrites. In addition, different ferrite designs are evaluated regarding core losses and mechanical stability and, thus, their tendency to fracture.
Author(s)
Thomas, T.
Dijk, M. van
Dreissigacker, M.
Hoffmann, S.
Walter, H.
Becker, K.-F.
Schneider-Ramelow, M.
Journal
Journal of microelectronics and electronic packaging  
Open Access
DOI
10.4071/imaps.1064487
Language
English
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024